讲座题目:Distributed Empirical Likelihood Inference with Massive Data
主讲人:中国科学院王启华教授
讲座时间:2024年3月20日(周四)14:00—15:00
讲座地点:6号学院楼402会议室
主办单位:59白菜专区论坛总站、浙江省2011“数据科学与大数据分析协同创新中心”
摘 要:
Empirical likelihood is a very important nonparametric approach which is of wide application. However, it is hard and even infeasible to calculate the empirical log-likelihood ratio statistic with massive data. The main challenge is the calculation of the Lagrange multiplier. This motivates us to develop a distributed empirical likelihood method by calculating the Lagrange multiplier in a multi-round distributed manner. It is shown that the distributed empirical log-likelihood ratio statistic is asymptotically standard chi-squared under some mild conditions. The proposed algorithm is communication-efficient and achieves the desired accuracy in a few rounds. Further, the distributed empirical likelihood method is extended to the case of Byzantine failures. A machine selection algorithm is developed to identify the worker machines without Byzantine failures such that the distributed empirical likelihood method can be applied. The proposed methods are evaluated by numerical simulations and illustrated with an analysis of airline on-time performance study and a surface climate analysis of Yangtze River Economic Belt.
主讲人简介:
王启华,中国科学院数学与系统科学研究院研究员,博士生导师,国家杰出青年基金获得者,教育部“长江学者”奖励计划特聘教授,中科院“百人计划”入选者。曾在北京大学与香港大学任教,先后访问加拿大Carleton大学、美国California大学戴维斯分校、美国California大学洛杉矶分校、美国Yale大学、美国华盛顿大学、美国西北大学、德国Humboldt大学、澳大利亚国立大学及澳大利亚悉尼大学等十余所国际知名大学。主要从事缺失数据分析、高维数据统计分析及大规模数据统计分析等方面的研究。出版专著三部,在The Annals of Statistics, JASA及Biometrika等国际重要刊物发表论文140余篇,部分工作已产生持久的学术影响。曾主持国家杰出青年基金项目、重点项目及多项面上项目。是高维统计分会理事长,中国现场统计研究会与中国概率统计学会常务理事,先后是IMS-China和IBS-China委员会委员,是一些国际与国内一些学术期刊编委及科学出版社出版的《现代数学基础》与《统计与数据科学》丛书的编委。
欢迎感兴趣的师生积极参加!